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ON MINIMAX POSITION CONTROL®

A. N. KRASOVSKII

The problem of controlling a differential system with indeterminate noise is examin-
ed by the game-theoretic approach proposed and developed in /1—6/. The main result
is the construction of the saddle point of the differential game being examined in
the form of optimal mixed position strategies for a specific class of functionals
designated as position functionals. It is established that the optimal strategies
can be specified by functions depending solely on the current position and on a
certain parameter the introduction of which is an essential element in the scheme
being proposed. A stable approximation control scheme is constructed, guaranteeing
the players results arbitrarily close to the game's value with a probability arbit-
rarily close to one if only the time step is sufficiently small.

1. We examine an object described by the differential equation
V=), <t weEP, ve@, [fhyu 0 << 4+ 1y D), % = const (1.1)

where y is an h-dimensional vector, tis time, u and v are vector-valued controls, P and
Q are compacta. Function [ is assumed to be continucus and to satisfy, in each bounded

domain G, a Lipschitz condition in Y with the constant LG, We consider the motions

starting in a prescribed bounded domain G, Then any motions on the interval [i,, 8], encount~

ered subsequently, do not leave some bounded domain G. All the continuous motions to be

examined below satisfy a Lipschitz condition in £.Let us consider the problem of controls u and p.

that, respectively, minimize andmaximize a functional ¥ prescribedon the motion ¥sl-lo = {y [4],

1y < @’}‘ The result consists in the construction of optimal mixed strategies within the

framework of a position differential game. In the scheme to be proposed a fundamental role

is played by certain models.

2. The state of an Z-model at instant ¢ is characterized by an n-dimensional vector

zlfl. A set of Borel-measurable functions {u;{tl P, p;[1 =0, j=1,2,... , NO; p [t + ... +
pyw ltl =1} is called an action F® (4, 1*) of the first player on the interval (i,, *), f, <
Ly <t* ¥ A set of measurable functions {1l E Q@ @l >0, k=1,2,.. , N® gl +. . L

gy 11l =1} is called an action F® (t,, t*) of the second player. For a given initial posi=-
tion {ty, %4} the actions F® (1, t*) and F@ (i, *) generate a motion & l#], #, <t < t*, being
an absolutely continuous solution of the egquation

N iz (2.1)
@[t = HZI F@ 2 18], w13, 0 (81)- p3 181 -0k (]
an action F® (e t*)F® (f, t*)) is said to be elementary if u; 2] = u; = const, p;[f] = p; = const
{vr [t] = vy = const, gy [2l= gx = const).
A rule that from any possible values {f, r, ¢> 0} fixes the constant vectors{py ..., Pyas}
{un, - L ugoh &P (o - - qpeh o, L., Uyoh Uk Q) is called a strategy U, on the first

player (V,of the second player}. We construct the {g, A}-motion of the & -model, generated
by strategy U, from position {4, zlf]} in steps [t;, 1;4¢]. Suppose that a partitioning A of
interval [%,®] by points t1; has been chosen such that I, =T, <T<...<Tm =% We Fix
e>0. If a position {v;, zlr;]} is realized, then from {%;, z[%;], ¢} the strategy U, fixes
the vectors {p;il} and {y;I1} and the corresponding elementary action F® (1;, 1;,,) operates on
the interval (t; 7;41) . The second player can choose any action F® (1, T;,1) in (2,1).  This
pair of actions realizes the motion 23 [£], 7, <C t<{Tyqa r i.e., a solution of Eg. (2.1) for

ty = T, ¥ = T, uy [t = w0, p; [t] = p;/l. The motion of the z-model, generated by strategy
V. is defined analogously.

3. Let us examine the functionals y &, o) L<Ct <ha, L= (2 1¢], £, 1 K ¥}, defined
on piecewise-continuous curves a,,{-ls having only a finite number of points of discontinu-
ity of the first kind and being right-continuocus. The functionals are continuous in the
following sense: for any & >0 there exists 8§ (e) >0 such that |y 1-]s) — v (153}{.]‘9)] <e
as soon as

Suprecice |2 [l — 2@ [ | <8, ad [l G

*Prikl.Matem.Mekhan. ,44,No.4,602-610,1980
425



426 A. N. Krasovskii

Functionals representable in the form
V(@ [ e) = @ (0, [ 1w, @), =y (xp [-1g) (3.1)

where the function ¢ (x4 [-]m, @), is continuous and does not decrease with respect to a when
curve gz, [-]l» is fixed, are called position functionals. In particular,

b
Y= S‘ w(t, z{tlydt + o (z[0]), V¥ = infi,crcp Max (supcrceo (¢, 2, [8), o (3, z (1))
to
are such functionals. If function a, |-l is discontinuous at ¢ ~=(*, then in the notation
@ (z1, -1+, & the symbol &, [-],. denotes the function z [¢] for t, << f*.

4, Let X (U, &, 8, by Tg) = {xn, [-To} (X (V, &, 6, ty, z4)={z, |-lg})) be a bundle of {e, A}-
motions generated by strategy U, (V,) from position {i, z.}, t, & lt,, @] when (tiss — 1;) <C 8. Let

infy inf, infs sup [y (x1, [-lg), a, I'le € X (U, &, 6, ty, 7)) = PO (2, x [t,])
Supy supe sups inf [y (2, [-lg), 21, -1 £ X (V, ¢, 6, ter 1) = V2 (L, 2 L8,))

Strategy U,” is said to be optimal if for any § >0
P (o [ o) <YD (tye 2 [2]) + &y 20 Lo & X (Ul £, 8, . 2,), e < e (L), 68 (e)
We note that for any preselected { > (0 we have

¥ e o) g ([, v (4 @ [1,]) +
where z,[-l, is the motion realized by the instant ty and zx,1-lg 1s the motion composed of
z, [-1, and any {e, A}-motion x,[-loe& X (US, e 8, t,, 2lt,]) with e<e (L), 8 <8 (g 0. Strategy
V., is said to be position-optiral if for any >0

Vo) Zv@ (L, 2 1) — & 2 e @ X (V0 6,8, 6y, 2 18,D), e << e(D), 88 (e D).
We have
¥ (@, o) 2= @ (o L1y, ¥® (te, z [8,1)) — ¢

where z,{-], is the motion realized by the instant ¢, and I [-J¢ is the motion composed of
2, [, and any {e, A}-motion -l X (V. & 6, te, Lt ]y, & < e (L), § <6 (e, O).
We say that the pair {U,°, V,°} constitutes a position saddle point and yields the game's
value ¥° (t, z) if

YO (@) =y (2 =V (), ¥ (e 2 D) Z e (D, ¥ (0, 2 [0]) — €
Lty []ﬂ =X (Uxof €, 67 t*w x [t*]>1 ?0 (t*’ T [t*]) < P (Ih [']1*1 VO (t*’ x [t*])) -+ C

z, -lo = X (V,°, ¢, 8, £y, z [1,))
for any {>>0 when e<Ce () and & <8 (g, {). The problem is to construct the strategies
{US, V,°} constituting the saddle point.

5. The state of the W-model is characterized by the nr-dimensional vector wlt]. The
motions of the W -model are generated by actions defined in the same way as for the T -model
and which are marked by asterisks, F, W (t,, *) and F,® (t,, t*), to distinguish them from the
actions of the 2 -model. A motion of the w-model on interval li,.(*] is a solution of

N, N(@ (5.1)
wil= X el v ) pa UGt Wit =y
A rule which at an instant 7; > t, fixes Tia > T and F® = F® (1, 1;4) on the basis of given
{v, F8, F2, s=0,1,...,i—1}, F = FP (r,, T,u1) is called a Qite, vy ~Procedure. The first
player fixes F{ = F;l) (Ty, T;41) Lrom the known Ty and F. In the ‘notation Qi1 wyy the symbol
{ty» w4} 1indicates that the motion is formed from the position {t,, w,}. Procedures in which the
number of instants T1; from T,=1¢, to ¥ is finite for each possible realization of Wg*[']ﬁ
are admissible. This number can be different for different realizations. Realizations with
any number of instants 7; are possible.
Let B be some number. A procedure @y, «, is called a (B — Qy,. w,)- Procedure if for any

motion i, [-], generated by it the condition v (w, [-l¢) > B is fulfilled. By o (I, w) we
denote the least upper bound of the f for which a (f — Qy,, «,)-procedure exists, It can be
shown that function p (fx. w*) is continuous in . The following statements are valid.

Lemma 5.1. Let a position {t,, w,} be given and let * > f,, &, >0 and F@ (1, 1*) be
specified. Then we can find &* >0 and an action FY (s, *) which in pair with F (1, %)
generates a motion 1wy, [-]+ such that
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@ (wr, [disy p (8%, w*) + 2e%) > 0 (By: w4) T 284 (5.2)

Lemma 5.2. Let a position {t,,w,} be given and let @* >1{,, &, >0 and a motion
wy, [-]» generated by a (B — Qu,, w,y) ~procedure with f = p (t4, wy) — e, be specified. Then
we can find &* >0 such that

@ (@i [ p (8%, w*) — 2e%) = p (ty, wy) — 284, w* = wy, [*] (5.3)
Consider the function
Mt 2, w) = |z — wlexp {—3Lg - (t — )} (5.4)
Lemma 5.3. Let a bounded domain G* be specified in space {z} and let &>>0. Then we
can find vectors {u, ..., un}, {U1, .. Un}, Yy EP, vy €Q, N = N (g, G*),and a number § (g, G*) >0
such that if the vectors ({p,° ..., py°} and {gu°, ..., gxp°} have been defined from the conditions
N,N
max 3 Sy f (tyr Zr wj, V8) - ;- = min Idem (p;° — p;) (5.5)
q J, k=1 »
N,N .
min kzl Sy f (Lys Wes U, k) Pyj Gy = max Tdem (@ — @) (5.6)
Px ], 0= Qx

where s, = 7, — Wy, for t,&(t,%, 2, =6* and w, < (G*, then for te <t < ty + 6 (g, G*) the

elementary action FM (¢, 1), corresponding to {p;°}, in pair with any action F@® (ter 1) »
and the elementary action F @ (t,, t), corresponding to {¢4°}, in  pair with any action
F, W (t,, 1), generate motions z [t]and w [t] for which
Mz, wlel) <My, 24, wy) + &0 (8 — 1) (5.7)

Here and further the symbol Idem in the right hand side of an equality denotes an expression
coinciding with the left hand side of this equality with the change of symbols indicated with-
in the parentheses.

Lemma 5.4. This lemma can be stated analogously to Lemma 5.3 by interchanging the
symbols p and g, as well as the actions F®) (¢, ¢) and F® (e 1)

6. We construct strategies U, and V% which we call extremal. We select e 0 and
x x
{t4, 24). By K, we denote the set of points w satisfying the inequality

Aty 2y w) < &0 (ty — 2g) (6.1)

A point w,& K, is called an accompanying point if it satisfies the condition:

a) for constructing strategy U,’

P (e Wy) :féléip (ty w) (6.2)

b) for constructing strategy V,*

p (ty, wy) = max p (¢, w) (6.3)
weEKy
There can be several such points Wy . We choose one of them for each given {tyr 24 €} . We
fix €* >0 and we select domain G* such that w, & G* for all e<Ce* and r, & G. Later
we select only & <Cg*,

An extremal strategy U,®(Vy") is a rule that associates with possible values of {ly T4 &}
the vectors {u;} and {p;°} {vx} and {gx°}) connected by condition (5.5) (corresponding to the
condition from Lemma 5.4) and satisfying estimate (5.7) wherein w,is the accompanying point.

As a consequence of the measurable selector theorem /7/ the vectors {p;°}, and {g;°} can be
taken as functions Borel-measurable in =z, , since conditions (5.5), (5.7), the corresponding
conditions from Lemma 5.4, and relations (6.1)— (6.3) define for the choice of ({p;°} and {g:°}
compact sets that are semicontinuous relative to z,.

Suppose that the first player is guided by strategy U,* and has chosen e >0 and the
partitioning A = {r;}. These data generate a certain motion 7., [-ls. Let wlr;] be the ac-
companying point for =z [t;]. With motion 2% {t]l we associate an accompanying motion of the w-
model. On the half-open interval =; {?¢<{71;,; this is a solution of Eq. (5.1) with boundary
condition {%:, w %]}, generated by actions F® (1, 1;41) and  FO (14, 1;51) £from Lemma 5.3 with
zy =z ly] and  w, = wlt]. Motion w;, -] can undergc discontinuities at instants 1;. We
denote wiH = lim w[t), t— 1; — 0.

Relying on Lemma 5.3 and on the properties of the extremal strategy we can show that for
any F® (1, Tiv1) and F,® (15, 7i) the estimated (¢, 228 (2], wt]) e + & (& — ), 4, <<t <O, holds if

max | Tgs1 — T; | <8 (g, G) . Moreover, p (1,1, w [1;1)) < p (t;51, wli*1)). In the accompanying motion w {1
let the action F,W (1;, 7;,1) at each step be chosen in accord with Lemma 5.1. Then at each step we have

@ (we, [ Try, 0 0 (Tinny W) 2e40) o (15, w [T3]) + 264
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whence we obtain ¥ {wy [l <p (1, wln]) + 26, and, setting € = ¢, by induction we then
have

v (wn, [ o) o (b wy) + 2¢ (6.4)

Using the proximity of motion ISAu[', Usle to motion wy, [-lg, the continuity of functional ¥
and the continuity of p (¢, w) in w, we obtain the following result,

Theorem 6.1. Let position {f,, 7.} be realized., If, beginning with some instant b
the first player uses the extremal strategy J,%, then for any arbitrarily small & and

sufficiently small step § (¢) we have

Y, 110) p (fyo 24) + E(e), lim & (e) = O (6.5)
£

for any {e, A} -motion iy, [-le, 25, (L] = 2,0

Now let the second player be guided by the extremal strategy Vi. Rely-on the propert-
ies of this strategy and on Lemmas 5.2 and 5.4, we can derive the relations A (z, 2% [¢], w [¢])
et+e{t—1) <t < Ty P (Tieq. [T.i,”}} >=p {Tis1, w[i‘*ﬂ) and then

Y (wr, [-18) 2 0 (g wy) — 2¢ (6.6)
where {f,. w, = wl4]} is the accompanying point for position {f,. w,}, @ |1, is the motion of
the @ -model, which at each step is generated by the action Ff,f’ (Tes Tina) chosen from the con-
dition of Lemma 5.4, corresponding to condition (5.6), and by the action F? (t;, 7y,) fixed
by a(f — U, wiy;y)-procedure with f = p (1, w[1;l) — ¢, From this we obtain the following result.

Theorem 6.2. Let position {#,r,) Dbe realized. If, beginning with some instant I,
the second player uses the extremal strategy V.°, then for any arbitrarily small & and suf-
ficiently small step & (¢) >0 we have the estimate

Y (@ Ulo) 2 p (te 7)) — 1 (&), lim 1 @) = 0 6.7

for any {e, A}-motion.
A comparison of Theorems 6.1 and 6.2 leads to the next statement.

Theorem 6.3. The extremal strategy j¢ is the first player's optimal strategy. The

extremal strategy Vi is the second player's optimal strategy. The strategy pair {Us, V&)
forms a position saddle point. The game's value is 77 (¢, ) = p (¢, 2).

7. Let us now consider the original problem on the control of the given object (1.1).
Using the control-with-guide method /1/, wherein the ¥ -model is selected as the guide we
define a certain united strategy U of the first player.

The motion of the object, generated from position {f ¥y & Gy} by strategy U, is con~
structed simultaneously with some {e, A} -motion of the Z -model, generated by some strategy
U, included in U. Suppose that U, e>>0 and A = {r;} have been chosen. From the data

{v 1,1, = {1;), 7;, &} some strategy U, included in U fixes the elementary action F,(,“ (Tiy Tisl)

A random test is carried out, corresponding to the probability distribution {p‘.{”: o, i
of the random variable {1 .. . u;v(l)} , defined by the action Ff,‘) {t;, Ti). This test’s result
Upi) is the control for T; <! << Tiy. The second player, using some random mechanism of his

own, develops a function oy l#], 1, << ¢t <71y - The object's motion on interval [t tin] is a
solution of the equation

g2l == f (@ y ], vy, vpg D) (7.1}

The motion z% [i] is realized by the same partitioning A = {1;}from some suitable position{fy, %}
In the real control of the united system made up of the ¥ -object and the r-model only the
real first player controls the motion of the 2-model. However, in connection with the mat-
erial from Sects.l—6 it is convenient to separate his action into the action of a fictitious
first player who fixes F® (1, 1;y) in accordance with the selected strategy U, and the action
of a fictitious second player who fixes F® (v, 1;53) in accordance with some rule Ry, Thus,
the real first player has at his disposal the collection ({U,, U, Ry, z,} which is called his
united strategy U. ‘The motion {yl[t], x{t]} generated by U is denoted {y,!-, Uly zl:, Uls}.

It is obtained as a random motion since the choice of the forces is determined by random tests.
The motions of the object and of the z-model, generated by strategies V,., and ¥, and by some
rule Ry, and the united strategy V of the second player are determined in similar fashion.
The second player, of course, uses his own & -model.

Let us describe the construction of the extremal strategy U*.  We assume that the func-
tions ulv;] and v [t] are stochastically independent for 7w; <t < T4 The process {y [t], z [t}
being analyzed here is formalized as a probabilistic process within the framework of the strict
concepts of probability theory. This raises no principal difficulties since all the construc-
tions carried out yield control functions measurable with respect to {y[v;}, z [1;]}. We choose
the initial condition &y from the condition
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A (L, 2o, o) < & (7.2)
The 2 -model's motion Z[tf] is determined by the extremal strategy U,r. As the rule Ry® we
take one which fixes the actions F® (1;, T;s1) defined by the condition
N,N
min ) <gW.f (1, z[v) Uy v pi-ar°> = max Idem (q°—qx), gll=y[71;] —z [t (7.3)
P k=1 q

The rule by which the elementary action F,® (4, ) = {u;, p°} is fixed from the quantities
{Wxr Tyr Ly, €}, Y5 E G*, 7, EG* | by the condition
NN

max ;1 CBaf by Ysoo U5, 0)- PP gx> =min Idem (p° > P;), By ==Yu— 24 (7.4)
q y U= P

is called the extremal strategy U,°. The extremal strategy Vy' is defined analogously. The
strategy U® = {U/, U, R’ z,} is called the united extremal strategy. The united extremal
strategy V¢ is constructed analogously. The following statement is valid.

Theorem 7.1. For any numbers {>0 and 0y <1 we can always select >0 and
8 (e, G*) >0 such that for all motions generatedby U® = (U, U.*, Ry® z,) the estimate

Pyl Uls) <pltorgo) + D >%, POWLlHUNe) <Py ta) + 0 >x (7.5)

Poul Ulpop(t, y te)) < p(toy y) +3) >

will hold for all motions generated by V° = {V,f, V,°, Ry® z,} and estimates analogous to (7.5)
will hold with U* replaced by V¢ and ( by —¢, if only max; |Tjr— 1t | <0 (s, G*). By
P we have denoted the probability of the corresponding event. We observe that, by defini-
tion, from these conditions follow as well the fulfillment of conditions

Pl Ule) <@Wul-lwp G YD)+ >%5 Pyl V9e) > @ Wl 1o ot Y (ED)) — ) >%  (7.6)

Thus the relations (7.5) and (7.6) obtained permit us to call the quantity p (¢, y) the
value of the game and to call the united extremal strategies U® and V¢ described optimal
strategies yielding the game's saddle point.

8. The fundamental Theorem 7.1 has been proved under the assumptions that functions u [f]

and v [t] are stochastically independent for T; <<t <(7;;1. If the question is of control in
a game with Nature, this independence condition can be adopted as a separate postulate. With-
out a logical contradiction this postulate imposes a constraint on the unknown mechanisms
forming the noise v ¢}, However, if we treat the process as a game between two real players
each of whom can act on their own strategies U and V with their own partitionings Ay = {t;U}
and Ay = {1;V}.then one cannot adopt such an independence condition as a postulate. The con-
nection between u [t] and v lt] depends upon the strategies U and V and the partitionings Ay
and Ay chosen. However, this difficulty can be overcome in the following well-known manner.
We assume that the forces ulil = u[vt,V], .09 <t< 1, and vl =vin¥]l, ;v <t<< 1), on object
(1.1) are obtained as the results of random tests with probability distributions {p,°} and

{g:°}, which now correspond not to the values yl1;Ul and y[%;¥] but to the values y [,V — 1U]
and y [t;¥ — 1V], where U >0 and 1V >0 are constant information lags. Then, relying once
again on the results in Sects.l— 7, we obtain the following statement.

Theorem 8.1. The united extremal strategies U¢ and V° described in Sect.7 but
developed on the basis of the lagging values y[t,Y — Y] and ¥ lv;¥ —1V], constitute the saddle
point {U° V°} of the game being analyzed, with value y° =p (¢, y), i.e., thev ensure the
fulfillment of conditions (7.2)— (7.5) if only the conditions

I T - e v .
Tiy — TV <8 <Y, 1 — 1V <8V (8.1)

are fulfilled, where O 1% 8V 1V are sufficiently small positive numbers.

It is important to note here that now both players simultaneously form one and the same
motion z [t], each using his own I -model and each forming this motion on the basis of his
own united strategy U° or V° and his own partitioning A; or Ay.

9. The fundamental results given in Theorems 7.1 and 8.1 remain in force under conditions
on function [ somewhat more general than those in Sect.l. To be precise, we assume that
this function is bounded in any bounded domain G, is continuous in Y, 4, U for fixed t, and is
Borel-measurable in ¢ for fixed y,u,v. We consider the equation

el =zt + § § (7ot u,0)m(do, dufe) e (9.1)
iy P Q

where n(dv,du | ) is a probability measure on P X @, weakly Borel-measurable in t. Let G
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be a bounded domain. We assume that Eq. (9.1) has a unique solution for every zlf,l &G and
every measure 1, which for all # <(f<{?® is contained in some bounded domain Gg*. All these
conditions are obviously fulfilled under the conditions in Sect.l. However, under these more
general conditions we can repeat all the lemmas and theorems from Sects.l—8, merely replac-—
ing in them the function A of (5.4) by a certain function A constructed in accordance with
the ideas in /6/ and, when choosing the extremal vectors {p;°} and {4°}, replacing the func-
tion f by a suitable continuous function f, which approximates function f in a sufficiently
large domain G*, such that

S max |fs(T,y’UvU)“f(T»y7 Uy U)]dT<§[[], E[” < 3‘(1(}——~ Zo)

fo yet,u, v
The author thanks Iu. S. Osipov and V. E. Tret'iakov for much help with the paper.
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